EE———

REPORT COCUMENTATION PAGE

form acoroves

w—-u_‘"._'" + N SN AR, ACREBE) NS VO T TSR
_-—.—-'-—--"-.. e

" o o L TONINEERG ' Garamn
OIS o GRSNTI, CEAS SIGUIAEIS (I TR YU ST, (@ WEIREIRES ASRREY WPV, JPTTETUIS O SearRvaae
Ovn sy, D (B0, Armm, ¢4 LA, #0 @ we

m-n—--“!—-‘_ﬂ-ldmo‘,-':-"

1. AGANCY U3E ONLY (Lesve oent) ‘2- AIPORT OATL IJ. REPGAT TYPE AND OATRS COVIRED
Noy 20, 82

4 [TNL3 AND SUSTITLE

5. HINDWG NUMBSRS
Experimentation in Software Engineering.

oC JuMe

ARQER-F49620~

80-c-oor O |
& AMTHOMS)

Victor R. Basili, Richard W. Selly, and
David H. Hutchens

AFOSH

TR 90 0933
EA PRAFQRMENG ORGAMIIATION RAME(S) AND ADORESS(ES)
Department of Computer Science

University of Maryland

| =
College Park, MD 20742 l.Ol \Og'

. SPOMSOMING / MONITORING AGINCY NAMIE(S) AND ADORESHES)

18, SPONSORING | MONSTORING
. - MSERCY RIPORY NUMSIR

AFOSR

Bld 410

y Bolling AFB DC 20332-6448

11, SUPPULMENTARY ROTLS

132, JSTRIUTION / AVALABLTY STATEMANT

Approved £-7 autlic release H

' distriburion uglinited. .
-u.\usmcr (MARMTIRST 470 WOrak)

Research supported in part by the Air Force Office of Scientific
Research Contract AFOSR-F49620-80C2001 and the National Aeronautics and

Space Administration Grant NSG-5123 to the University of Maryland. Com-

puter- support prtovided by the Computer Science Center at the University of
Maryland. ' N

‘& SUAIECT TERMS

15. NUMBER OF PAGAS '
6 PRCE CODA —
e T Y

17 SECUMTY CLASSFICATION |18 SECURITY CLASUNCATION {15, - SICUMTY CLASSNCATION {20, LABTATION OF ASSTARCT

OF REpORT ©F Twis FAGE OF ARSTRACT Assr

' , ’ ' e ']

MM_MM—%LQ&M 9 1<
NSN / 540014805500 Snese Form 38 (§90104 Srar,

mm. o WA L9D%
/",‘ ¢ s \ o~
Q(‘ (43¢ 25 01:)

TR~1575

Agne won For

NS Crnkl é
Oric TAD 0
Uienno..ced 0
Justificatiens

By

Distribution |
Avanlabiny Coides
| Avi1 rcfor

Dist Soecial

a1l |

Nov. 20,

1985

EXPERIMENTATION
IN
SOFTWARE ENGINEERING

Victor R. Basili,
Richard W. Selby, Jr.,
-David H. Hutcheus

N Wt r
LI DO

Horaation o

visieqg

Research supported in part by the Air Force Office of Scientific
Research Contract AFOSR-F49620-80C2001 and the National Aeronautics and

Space Administration Grant NSG-5123 to the University of Maryland.

Com-

pucter support provided by the Computer Science Center ar the University of

Maryland.

Rnpproved for putlic rolooey
distribution uniirivited

Experimentation in Software Engineering

Victor R. Basill !, Richard W. Selby, Jr. 2,
and David H. Hutchens 3

! Department of Computer Sclence. University of Maryland. College Park. MD 20742
(301) 454-2002

2 Department of Information and Computer Sclence, University of Callfornia, Irvine, CA
92717 (714) 856-7403; was with the Department of Computer Sclence, Unlversity
of Maryland, College Park, MD 20742

3 Department of Computer Sclence, Clemson Unlversity, Clemson, SC 29631 (803) 854-
4464

KEYWORDS:
software technology measurement and evaluation, data collection and analysls, soft-
ware metrics, controlled experiment, experimental design, empirical study

Research supported in part by the Air Force Oflce of Sclentiic Research Contract AF OSR-F 49620-80-C-001 and the Natlonal
Aeronsutics and Space Administration Grant NSG-5123 to the Unfversity of Maryiand. Computer support provided in part by the
Computer Science Center at the University of Maryland.

~ S
\ \ ABSTRACT
Y

Experimentation In software englneering supports the advancement of the fleld
through an lterative learnlng process. In thls paper we present a framework for analyz-
Ing most of the experimental work performed In software englneering over the past
several years. We describe a varlety of experiments In the framework and disenss thelr
contribution to the software englneering dlscipllne. Some useful recommendations for

»)
the application of the experimental process In software engineering are included. A J’M)

<

Table of Contents

1 Introduction ceeresesesnsesaes cesearenane Cretatseieuesetasteetetttetiantirsasananttecnronsnsrnsoraane ceres
2 Objectlvesccceeevennn creasennensstarsiesetstncannnsansentan ceseesecenrasens seertrenseerertestatternettstarannts
3 Experimentation FramMeWOrK .icccccccecieersittiereacerosmecercasseesesosnsseenssessscnssssssssssssssssnase
3.1 Experiment DefARItION ..ccceirerrunrernnarecenenennes eereterertanatitaristetatsnnennannnnn ceresemeenens
3.2 Experiment Plannlng ceessereesesatennnsnnne etnseseeaseetaensstseetertrtenstenareseraarsrnanes
3.3 Experiment Operationc..c....... ceonane ethetasettetsieteitnttesanaratennenrennernranrrnnneens
3.4 Experiment Interpretation cresteeenssreasance eteusseetttrettsansarseststectrsasacsansaesesraenns
4 Classification of Analyses cevernienes cereeraeens erhtteaerecerseststtasertenanesnanssensertsnntas
4.1 Blocked Subject-Project Studlescccccccicrcrineeesaserarircrecennsseoneraanes cessresaseseranens
4.2 Replicated Project Studles ...c.cccceeeerecrnerecesserencncenens cevesersesene cetereceesnrssecreseriennas
4.3 Multl-Project Variatlon Studlesc.ccceeceeerncsccecncersessecseessessacnns severesesseserarasens
4.4 SIngle Project StUAIEs ..ccccccverreciennerinitsissiansensesrsecsaeesssressescens cerasesesasanerasrosnenes
5 Problem Areas In Experimentation ...c.ccccceececeneecennccacereenonce crersresescesans seseresasesanenane
5.1 Experimentation Overallc.ceeaeenne. ceeresesesasentnsasanenne rreeeteettuersettasenstesessarenses
5.2 Experiment DefINItION vuccrieiireunccriesonierscsectecseresssnsrasceseassessressssseenssessssnsessosses
5.3 Experiment Planning cesressesssssersacrosnsansas Ceetecerersaretssnesesneresenaresnnestansnnense
5.4 Experiment OPeratlonc.cccieeeeecrenesrnresessneessannossscessssssnntnesssansssansossnsessassess
5.5 Experiment Interpretation ceesnsesenssecsnsas ceeserascternesrorsesesserronassnns cernsensaserennes
8 CONCIUSION .iiivrccrecirercrsacanscncnccrscccssssssassancssonssssssassnse cresnsessernestasansaeassans cesrersesescanse

T RETEIEICES .iiveirectcesvecossrsssssssssereeressssersarsssessssssssensersssasrsesssssesssessessnsssnassssansasssnsenns

b o~ e R R O~ I

19 N =
W N © & ~

23

1. Introduction

As any area matures, there Is the need to understand Iits components and thelr rela-
tlonships. An experlmental process provides a baslis for the needed advancement in
knowledge and understanding. Since software englineering is in 1ts adolescence, it 1S cer-
talnly a candldate for the experimental method of analysls. Experlmentation s per-
formed In order to help us better evaluate, predict, understand, control, and !mprove

the software development process and product.

Experlmentation in software engineering, as with any other experimental procedure,
Involves an lteration of a hypothesize and test process. Models of the software process
or product are bullt, hypotheses about these modeils are tested, and the Informatlon
learned 13 used to reflne the old hypotheses or develgp new ones. In an area llke soft-
ware englineering, thls approach takes on speclal Importance because we greatly need to
Improve our knowledge of how software 1s developed, the effect of various technologtes,
and what areas most need improvement. There 1s a great deal to be learned and intul-

tlon 1s not always the best teacher.

In this paper we lay out a framework for analyzing most of the experimental work
that has been performed In software engineering over the past several years. We then
discuss a v‘arlety of chese‘exper!mbnts. thelr resul't.s, and the Impact they have had on

our knowledge of the software engineering discipline.

2. Objectives

There are three overall goals for this work. The first objectlve I1s to describe a

framework for experimentation In software englineering. The framework for experimen-

1

tation 18 Intended to help structure the experimental process and to provide a
classificatlon scheme for understanding and evaluating experlmental studles. The
second objective 18 to classify and discuss a vartety of experiments from the literature
according to the framework. The description of several software englneering studles Is
Intended to provide an overview of the knowledge resulting from experimental work, a
summary of current research directions, and a basls for learning from past experlence
with experimentation. The third objective 1s to ldentify problem areas and lessons
learned 1n experimentatlon in software engineering. The presentation of problem areas
and lessons learned Is intended to focus attentlon on general trends In the fleld and to
provide the experimenter with useful recommendations for performlng future studles.

The following three sections address these goals.

3. Experimentation Framework

The framework of experimentation, summarized Iln Flgure 1, consists of four
categories corresponding to phases of the experimentation process: I) definitlon, II) plan-
ning, II) operatlon, and IV) Interpretation. The following sections discuss each of these

four phases.

3.1. Experiment Definition

The ﬁrst phase of the exper?mental process {s the study deflnitlon phase. The
study definitlon phase contalns six parts: A) motlvation, B) obJect, C) purpose, D) per-
spective, E) domaln, and F) scope. Most study definitions contaln each of the slx parts;

an example deflnition appears In Figure 2.

There can be several motivatlons, objects, purposes, or perspectlves Iln an experl-
mental study. For example, the motlvation of a study may be to understand, assess, or
lmprove the effect of a certaln technology. The ‘‘object of study” Is the primary entlty
examlned In a study. A study may examine the flnal software product, a development
process (e.g., lnspectlon process, change process), a model (e.g., software rellabliity
model), etc. The purpose of a study may be to characterize the change In a system over
time, to evaluate the effectiveness of testing processes, to predlict system development
cost by using a cost model, to mctivate! the valldity of a theory by analyzing emplrical
evidence, etc. In experimental studles that examlne ‘'software quality,” the Interpreta-
tion usually Includes correctness If 1t I1s from the perspectlve of a developer or reliabllity
1f 1t I1s from the perspective of a customer. Studles that examline metrics for a glven pro-
Ject type from the perspective of the prolect manager may lnterest certaln project
managers, while corporate managers may only be Interested If the metrics apply across

several project types.

Two Important domalns that are consldered |n experimental studles of software are
1) the Individual programmers or programming teams (the ‘‘teams”) and 11) the programs
or projects (the ‘‘projects”). *“‘Teams™ are (possibly slngle-person) groups that work
separately, and ‘‘projects” are separate programs or problems on which teams work.
Teams ma:'r be characterized by e)Eperlence. slze, organlzatlon, etc., and projects may be

characterized by size, complexity, application, et¢c. A general classificatlon of the scopes

! For clarificatlon, the usage of the word ‘‘motivate™ as a study purpose 1s distinct
from the study "‘motlvation.”

of experimental studles can be obtalned by exam!ning the slzes of these two domalns
consldered (see Figure 3). Blocked subject-project studles examine one or more objects
across a set of teams and a set of projects. Replicated project studles examlne object(s)
across a set of teams and a single project, while muitl-project varlation studles examlne
object(s) across a single team and a set of projects. Slngle proJect studles examlne
object(s) on a single team and a single project. As the representativeness of the samples
examined and the scope of examlinatlon Increase, the wider-reaching a study’s conclu-

slons become.

3.2. Experiment Planning

The second phase of the experimental process is the study planning phase. The fol-
lowing sectlons dlscuss aspects of the experiment planning phase: A) deslgn, B) criter!a,

and C) measurement.

The design of an experiment couples the study scope with analytical methods and
indlicates the domaln samples to be examined. Fractional factorial or randomized block
designs usually apply 1n blocked subject-project studiles, while completety randomized or
Incomplete block designs usually apply 1n multl-project and replicated project studles
(33, 40]. Multivariate analysis methods, Including correlatlon, factor analysis, and re-
gression (75, 80, 89|, generally may be used across all experimental scopes. Statistical
models may be formulated and customlzed as appropriate [89]. Non-parametric
methods should be planned when only limited data may be avallable or distributional
assumptions may not be met [99]. Sampling techniques [41] may be used to select

representative programmers and programs/projects to examilne.

Different motivatlons, objects, purposes, perspectives, domalns, and scopes require
the examlnatlon of different criterta. Criterla that tend to be direct reflections of
cost/quallty Include cost [111, 108, 88, 4, 28], errors/changes (49, 14, 109, 2, 81, 19], rell-
ability, (42, 84, 568, 70, 69, 78, 77, 95|, and correctness {51 61, 88]. Criteria that tend to
be Indlirect reflections of cost/quallty include data coupling {82, 48, 102, 78], Informatlon
visibllity (85, 83, 55], programmer understanding (98, 100, 107, 110], executlon coverage

(103, 21, 24|, and size/complexlty [17, 58, 7T1].

The concrete manifestations of the cost/quallty aspects examlned In the experlment
are captured through measurement. Paradigms assist In the metric deflnition process:
the goal-questlon-metric paradlgm (20, 22, 25, 93] and the factor-criteria-metric para-
digm ({39, 72|. Once appropriate metrics have been defined, they may be vaildated to
show that they capture what 1s intended [12, 18, 44, 50, 106, 113]. The data collection
process Includes developing automated collection schemes [15] and deslgning and testing
data collectlon forms [22, 10]. The required data may Include both objective and sub-
Jectlve data and differents levels of measurement: nomlnal (or classificatory), ordinal (or

ranking), nterval, or ratio [89].

3.3. Experiment Operation

The third phase of the experimental process 1s the study operation phase. The
operation of the experiment consists of A) preparation, B) execution, and C) analys!s.
Before conductlng the actual experiment, preparatlon may Include a pllot study to
confirm the experimental scenarlo, help organlize experimental factors (e.g., subject ex-

pertise), or inoculate the subjects (44, 43, 83, 24, 110, 73|. Experimenters collect and

valldate the deflned data during the executlon of the study (18, 109]. The analysls of
the data may Include a comblination of quantitative and qualitative methods {30]. The
prellmlnary screening of the data, probably using plots and histograms, usually proceeds
the formal data analysls. The process of analyzing the data requires the investigation of
any underlying assumptlons (e.g., distributional) before the appilication of the statistical

models and tests.

3.4. Experiment Interpretation

The fourth phase of the experimental process 13 the study interpretation phase.
The Interpretation of the experiment consists of A) interpretation context, B) extrapola-
tlon, and C) Impact. The results of the data analys!is from a study are interpreted In a
broadening series of contexts. These contexts of Interpretation are the statistical frame-
work In which the result Is derived, the purpose of the partlcular study, and the
knowledge 1n the fleld of research [15]. The representativeness of the sampling analyzed
in a study quallfies the extrapolation of the results to other environments [20]. Several
follow-up activitles contribute to the Impact of a study: presenting/publishing the
results for reedback.. replicating the experiment (33, 40|, and actually applylng the
resuits by modlfying methods for software development, malntenance, management, and

research.

4. Classification of Analyses

Several Investigators have published studles in the four general scopes of examlna-
tlon: blocked subject-project, replicated project, multl-project varlatlon, or single pro-

Ject. The following sectlons cite studles from each of these categorles. Note that sur-

veys on experimental methodology In emplrical studles include (35, 68, 74]. Each of the
sections first discusses one experiment In moderate depth, using italiclzed keywords from
the framework for experimentation, and then chronologically presents an overview of

several others In the category.

4.1. Blocked Subject-Project Studies

W1th a motivation to Improve and better understand unit testing, [24] conducted a
study whose purpose was to characterize and evaluate the processes (l.e., objects) of code
readlng, functional testing, and structural testing from the perspective of the developer.
The testing processes were examlned In a blocked subject-project scope, where 74 stu-
dent through professlonal programmers (from the programmer domasn) tested four unlt-
slze programs (from the program domasn) In a repilcated fractlonal factorial design. Ob-
Jectlve measurement of the testing processes was In several criteria areas: fault detectlon
effectlveness, fault detectlon cost, and classes of faults detected. Experiment prepara-
tion \ncluded a pllot study [63], ezecution Incorporated both manual and automated
monlitoring of testing activity, and analysis used analys!s of varlance methods {33, 90|.
The malor results (In the interpretation contezt of the study purpose) Inciuded 1) with
the professionals, code reading detected more software faults and had a higher fault
detectlon rate than did the other.methods; 2) with the professionals, functional testing
detected more fauits than did structural testing, but they were not different In fault
detection rate; 3) with the students, the three technlques were not different ln perfor-
mance, except that structural testing detected fewer faults than did the others ln one

study phase; and 4) overall, code reading detected more Interface faults and functlonal

cestln_g detected more control faults than did the other methods. A major result (In the
interpretation contezt of the fleld of research) 1s that the study suggests that non-
executlon based fault detectlon, as In code reading, 1s at least as effectlve as on-llne
methods. The particular programmers and programs sampled quallfy the eztrapolation
of the results. The impact of the study Is an advancement In the understanding of

effectlve software testing methods.

In order to understand program debugging, [57] evaluated several related factors,
Including effect of debugglng alds, effect of fault type, and effect of particular program
debugged from the perspective of the developer and malntainer. Thirty experlenced
programmers Independently debugged one of four one-page programs that contalned a
single fault from cne of three classes. The maljor results of these studles were 1) debug-
ging is much faster If the programmer has had previous experience with the program. 2)
assignment bugs were harder to find than other kinds, and 3) debugging alds did not
seemn to help programmers debug faster. Consistent results were obtalned when the
study was conducted on ten additional experlenced programmers [58]. These results and
the ldentificatlon of possible “‘principles” of debugglng contribute to the understanding

of debugging methodology.

In order to \mprove experimental methodology and Its application, {110} evaluated
pmgrammerS' abllity to understami and modlify a program from the perspective of the
developer and modifler. Various measures of programmer understanding were calculat-
ed, In a serles of factorial design experiments, on groups of 18 — 48 unlversity students
performing tasks on two small programs. The study emphasized the need for well-

structured and well-documeuted programs, and provided valuable testlmony on and

8

worked toward a sultable experimentation methodology.

In order to assess the lmpact of language features on the programming process, {53}
characterized the relatlonshlp of language features to software rellabllity from the per-
spective of the developer. Based on an analysls of the deficlencles In a programming
language, nine different features were modlfled to produce a new verslon. Fifty-one ad-
vanced students were dlvided into two groups and asked to complete implementations of
two small but sophlsticated programs (75-200 llne) In the origlnal language and Its
modlﬁed version. The redesigned features in the two languages were contrasted 1n pro-
gram fault frequency, type, and persistence. The experiment Identified several
language-design declslons that significantly affected rellability, which contributes to the

understanding of language design for rellable software.

In order to understand the unit testing process better, [80] evaluated a readlng
technlque and functlonal and ‘‘selective” testing (a composite approach) from the per-
spective of the developer. Thirty-nlne unlversity students applled the technlques to
three unit-size programs In a Latin square deslgn. Functional and ‘“‘selective’’ testing
were equally effectlve and both superior to the reading technlque, which contributed to

our understanding of testing methodology.

In order to Improve and bensr understand the malntenance process, (43] conducted
WO experiments to evaluate factors that Influence two aspects of software malntenance,
program understanding and modiflcatlon, from the perspective of the developer and
malntalner. Thirty-six junlor through advanced professional programmers In each ex-

periment examined three classes of small (38 - 57 source llne) programs in a factorial

design. The factors examined include control flow complexity, variable name mnemonl-

9

clty, type of modificatlon, degree of commenting, and the relationshlp of programmer
performance to various complexity metrics. In (44] they contlnued the lnvestigation of
how software characteristics relate to psychologlcal complexlity, and presented a third
experiment to evaluate the ablllty of 54 professional programmers to detect program
bugs In three programs In a factorlal design. The serles of experiments showed that
software sclence [58] and cyclomatic complexity [71] measures are related to the

difficulty experienced by programmers ln locating errors la code.

In order to Improve and better understand program debugging, (108] evaluated the
theory that “‘programmers use ‘slicing’ (stripplng away a program'’s statements that do
not Influence a glven variable at a given statement) when debugging” from the perspec-
tlve of the developer, malntalner, and researcher. Twenty-one unlversity graduate stu-
dents and programming staff debugged a fault !n three unlt-size (75 - 150 source llne)
programs In a non-parametric design. The study results supported the sliclng theory,
that 1s, programmers during debugging routinely partitioned programs into a coherent,
discontiguous plece (or siice). The resuits advance the understanding of software debug-

ging methodology.

In order to !mprove design techniques, [87] evaluated flowcharts and program
design languages (PDL) from the perspective of the developer. Twenty-two graduate
students designed two small (approximately 1000 source llne) projects, one using
flowcharts and the other using PDL. Overall, the results suggested that design perfor-

mance and deslgner-programmer communlcation were better for projects using PDL.

10

In order to valldate a theory of programmling knowledge, (101} conducted two stu-
dles, using 139 novices and 41 professional programmers, tO evaluate programmer
behavior from the perspective of the researcher. The theory was that programming
knowledge contalned programming plans (generic program fragments representing com-
mon actlons sequences) and rules of programming discourse (conventions used In com-
posing plans into programs). The resuits support the existence and use of such plans

and rules by both novice and advanced programmers.

Other blocked subjlect-project studles Include (82, 112].

4.2. Replicated Project Studies

With a motsvation to assess and better understand team software development
methodologles, [15] conducted a study whose purpose was to characterize and evaluate
the development processes (1.e., objects) of a a) disciplined-methodology team approach,
b) ad hoc team approach, and ¢) ad hoc individual approach from the perspective of the
developer and project manager. The development processes were examined in a repll-
cated project scope, In which advanced university students comprising seven three-
person teams, sIx three-person teams, and six iadlviduals (from the programmer domain)
used the approaches, respectively. They separately developed a small (800 - 2200 Iine)
compller (from the program domein) In a non-parametric design. Objectlve measure-
ment of the development approaches was In several crilerig areas: number of changes,
number of program runs, program data usage, program data coupiing/binding, statlc
program size/complexity metrics, language usage, and modularity. Experiment prepara-

tion Included presentatlon of relevant material (88, 7, 34|, ezecution Included automated

11

monlitoring of on-llne‘ development activity and analysis used non-parametric comparison
methods. The maJjor results (In the interpretation contezt of the study purpose) Includ-
ed 1) the methodological disclpline was a key Influence on the general efliclency of the
software development process; 2) the disciplined team methodology significantly reduced
the costs of software development as reflected In program runs and changes; and 3) the
examlination of the effect of the development approaches was accomplished by the use of
quantitative, objectlve, unobtrusive, and automatable process and product metrics. A
major result (In the interpretation contezt of the fleld of research) Is that the study sup-
ports the bellef that lncorporating discipline In software development reflects positively
on both the development process and flnal product. The particular programmers and
program sampled quallfy the ezirapolation of the results. The smpact of the study Is an
advancement in the understanding of software development methodologles and thelr

evaluation.

In order to improve the design and !mplementation processes, {84] evaluated system
modularity from the perspective of the developer. Twenty unlversity undergraduates
each developed one of four different types of Implementations for one of filve different
small modules. Then. each of the modules were combined with others to form several
versions of the whole system. The major results suggested that minor effort was re-
quired !n assembling the systems And that major system changes can be confined to
small, well-defined subsystems. The results support the ldeas on formal speclficatlons
and modularity discussed In [83, 85] and advance the understanding of deslgn methodol-

ogy.

12

In order to assess the lmpact of statlc typlng of programming languages in the de-
velopment process, [54] evaluated the use of a statlcally typed language (having !ntegers
and strings) and a ‘‘typeless” language (e.g., arbitrary subscripting of memory) from the
perspectlve of the developer. Thirty-elght students programmed a small (48 - 297
source llne) problem In both languages, with half dolng it 'n each order. The two
languages were compared In the resulting program fauits, the number of runs contalning
faults, and the relatlon of sublect experlence to fault proneness. The major result was
that the use of a statically typed language can increase programming rellabiiity, which

assists In the design and use of programmIing languages.

In order to lmprove program composition, comprehension, debugging, and
modification, [98] evaluated the use of detalled flowcharts In these tasks from the per-
spective of the developer, malntalner, modifier, and researcher. Groups of 53 - 70 no-
vice through Intermediate subjects, In a series of five experiments, performed varlous
tasks using small programs. No significant differences were found between groups that
used and those that did not use flowcharts, questloning the merit of using detalled

flowcharts.

In order to Improve and better understand the unlt testlng process, (79] evaluated

the technlques of three-person walk-throughs, functional testing, and a control group
N

from the perspective of the developer. Flifty-nlne Junlor through advanced professional

programmers applled the technlques to test a small (100 source line) but nontrivial pro-

gram. The technlques were not di!fferent In the number of faults they detected, all palr-

ings of techniques were superior to single technlques, and code reviews were less cost-

effectlve than the others. These results asslst In the selectlon of appropriate software

13

testing techniques.

In order to valldate a particular metric famlly, (17] evaluated the abllity of a pro-
posed metric famlly to explaln differences In system development methodologles and sys-
tem changes from the perspective of the developer, project manager, and researcher.
The metrics were applled to 19 versions of a small (600 - 2200) compller, which were
developed by teams of advanced unlversity students using three different development
approaches (see the first study [15] described In this section). The major results includ-
ed 1) the metrics were able to differentlate among projects developed with different de-
velopment methodologles; and 2) the differences among Indlviduals had a large effect on
the relationships between the metrics and aspects of system development. These results

suggest Insights Into the formulation and appropriate use of software metrics.

In order to !mprove the understanding of why software errors occur, {85] character-
1zed programmer misconceptions, cognitive strategles, and thelr manlfestations as bugs
ln programs from the perspective of the developer and researcher. Two-hundred-four
novice programmers separately attempted impiementations of an elementary program.
The resuits supported the programmers’ intended use of ‘‘programm!ng plans™ [100} and
revealed that most people preferred a read-process strategy over a process-read strategy.
The results advance the understanding of how Individuals write programs, why they

sometimes make errors, and what pfogrammIing lanéuage constructs should be avallable.

In order to understand the effect of coding conventions on program comprehensibtll-
ty, {73] conducted a study to evaluate the relatlonshlp between !ndentatlon levels and
program comprehension from the perspective of the developer. Elghty-slx novice

through professional subjects answered questlons about one of seven program variations

14

with different level and type of Indentation. The major resuilt was that an {ndentatlon

leve] of two or four spaces was preferred over zero or siX.

In order to lmprove software development approaches, [29] characterized and
evaluated the prototyping and speclfying development approaches from the perspective
of the developer, proJect manager, and user. Seven two- and three-person teams, con-
sisting of unlversity graduate students, developed versions of the same applicatlon soft-
ware system (2000 - 4000 llne); four teams used a requirement/design specifylng ap-
proach and three teams used a prototyplng approach. The systems developed by proto-
typlng were smaller, required less development effort, and were easler to use. The sys-
tems developed by specifying had more coherent designs, more complete runctlonallci;
and software that was easler to Integrate. These results contribute to the understanding

of the merits and appropriateness of software development approaches.

In order to valldate the theoretical model for N-version programming [88], [87, 3]
conducted a study to evaluate the effectiveness of N-version programming for reilabllity
from the perspective of the customer and user. N-version programming uses a high-level
driver to connect several separately designed versions of the same system, the systems
“vote™ on the correct solutlon, and the solution provided by the majority of the systems
1s output. Twenty-seven graduate students were asked to independently design an 800
source llne system. The factors e?xamlned inciuded Individual system rellabllity, total
N-version system rellabllity, and classes of faults that occurred in systems simultaneous-
ly. The major result was that the assumptlon of independence of the faults In programs

is not Jjustified, and therefore, the reilabliity of the combined "voting™ system may not

be as high as given by the model.

15

In order to !mprove and better understand software development approaches, [94]
characterized and evaluated the Cleanroom development approach [47, 46|, In which
software 1s developed without executlon (l.e., completely off-line), from the perspective
of the developer, project manager, and customer. Flfteen three-person teams of ad-
vanced university students separately developed a small system (800 - 2300 source llne);
ten teams used Cleanroom and five teams used a traditlonal development approach In a
non-parametric design. The major results included 1) most developers using the Clean-
room approach were able to butld systems without program execution; and 2) the Clean-
room teams’ products met system requlrements more completely and succeeded on more
operatlonal test cases than did those developed with a traditlonal approach. The resuilts
suggest the feasiblllty of complete off-line development, as In Cleanroom, and advance

the understanding of software development methodology.

Other replicated project studles include (37, S, 63].

4.3. Multi-Project Variation Studies

WIth a motsvation to Improve the understanding of resource usage during software
development, (4] conducted a study whose purpose was to predlct development cost by
using a particular model (l.e., object) and to evaluate 1t from the perspective of the pro-
Ject manager, corporate managern and researcher. The particular model generation
method was examined In a multl-project scope, with baseline data from 18 large (2500 -
100,000 source line) software projects In the NASA S.E.L. production environment (from
the program domain), In which teams contalned from two to ten programmers (from the

programmer domasn) [10, 11, 38, 91]. The study design Incorporated muitlvariate

16

methods to parameterize the model. Objectlve and subjectlve measurement of the pro-

Jects was based on 21 criteria® In three areas: methodology, complexity, and personnel
experience. Study preparation Included prellminary work [52], ezecution Included an es-
tablished set of data collection forms (10|, and analysis used forward multivariate regres-
sion methods. The major results (1n the interpretation context of the study purpose) In-
cluded 1) the estimation of software development resource usage improved by consider-
Ing a set of both base-line and customlzation factors; 2) the application In the NASA
environment of the proposed model generatlon method, which considers both types of
factors, produced a resource usage estimate for a future project within one standard de-
viatlon of the actual; and 3) the confirmation of the NASA S.E.L. formula that the cost
per line of reusing code is 20% of that of developing new code. A major result (In the
interpretation contezt of the fleld of research) Is that the study highilghts the difference
of each software development environment, which Influences the use of resource est!ma-
tlon models. The particular programming environment and projects sampied qualify the
extrapolation of the resuits. The smpact of the study 1s an advancement In the under-

standing of estimating software development resource expendlture.

In order to assess, manage, and Improve muitl-project environments, (28, 26, 1086,
13, 36, 18, 62, 109, 97, 105] characterized, evaluated, and/or predicted the effect of

several factors from the perspectlve of the developer, modifler, project manager, and

corporate manager. All the studles examined moderate to large projects from produc-

? Twenty-one factors were selected after examining a total of 82 factors that possl-
bly contributed to project resource expenditure, including 36 from (106] and 16 from
[28].

17

tlon environments. The relatlonships Investigated were among various factors, Including
structured programming, personnel background, deveiopment process and product con-
stralnts, project complexity, human and computer resource consumption, error-prone
software i1dentificatlon, error/change distributions, data coupilng/binding, project dura-
tlon, stafl slze, degree of management control, and productlvity. These studles have
provided increased project visibillty, greater understanding of classes of factors sensitive
to project performance, awareness of the need for project measurement, and efforts for
standardizatlon of definitlons. Analysis has begun on Incorporating proJect varlatlon In-

formation Into a management tool {18, 23].

In order to improve and better understand the software malntenance process, [104]
conducted an experiment to evaluate the relationshlp between the rate of malntenance
repalr and varlous product and process metrics from the perspective of the developer,
user, and the project manager. A total of 447 small (up to 600 statements) commerclal
and clerical Cobol programs from one Australlan organization and two U.S. organiza-
tions were analyzed. The product and process metrics Included program complexity,
programming style, programmer quality, and number of system releases. The major
results were 1) In the Australlan organlzation, program complexity and programming
style significantly affected the malntenance repalr rate; and 2) In the U.S. organlzations,
the number— of times a system was.'released significantly affected the malntenance repalr

rate.

In order to Improve the software malntenance process, {1] evaluated operational
faults from the perspective of the user, customer, project manager, and corporate

manager. The fault alstory for nlne large production products (e.g., operating system

18

releases or thelr major components) was emplrically modeled. He developed an ap-
proach for estimating whether and under what clrcumstances preventively fixing faults
In operaclonal software In the fleld was appropriate. Preventlvely ixing faults conslists
of Installlng fixes to faults that have yet to be discovered by particular users, but have
been discovered by the vendor or other users. The malor result 1s that for the typlcal
user, correctlve service 1s a reasonable way of deallng with most faults after the code has
been Iin use for a falrly long period of time, while preventively ixing high-rate fauits is

advantageous during the time Immedlately followlng release.

In order to assess the effectlveness of the testing process, (31] evaluated estimations
of the number of residual fauits In a system from the perspective of the customer,
developer, and project manager. The study was based on fault data collected from
three large (2000 - 6000 modulie) systems developed in the Hughes-Fullerton environ-
ment. The study partitloned the faults based on severity and analyzed the differences In
estimates of remalning faults according to stage of testing. Insights were galned !nto re-

latlonships between fault detection rates and residual faults.

4.4. Single Project Studies

WIith a motivation to Improve software development methodology, [8] conducted a
study whose purpose was to characterize the process (l.e., object) of lteratlve enhance-
ment !n conjunction with a bop-dqwn. stepwise reflnement development approach from
the perspective of the developer. The development process was examlned In a single
project scope, where the authors. two experienced indlviduals (from the programmer

domain), bullt a 17,000 line compller (from the program domain). The study design ln-

19

corporated descriptive methods to capture system evolutlon. Objlectlve measurement of
the system was In several criteria areas: slze, modularity, local/global data usage, and
data binding/coupiing (82, 102]. Study preparation included language design [9], ezecu-
tion incorporated statlc analysls of system snapshots, and analysts used descriptlve
statistics. The resuits (1n the snlerpretation contert of the statistical framework) lnclud-
ed 1) the percentage of global varlables decreased over time whlle the percentage of ac-
tual vs. possible data couplings across modules Increased, suggesting the usage cf global
data becarn.e more appropriate over tlme; and 2) the number of procedures and func-
tlons rose over time while the number of statements per procedure or functlion de-
creased, suggesting !ncreased modularity. The major result of the study (In the in-
terpretation context of the study purpose) was that the terative enhancement technlque
encouraged the development of a software product that had several generally desirable
aspects of system structure. A major result (In the interpretation context of the fleld of
research) 1s that the study demonstrates the feasibllity of lteratlve enhancement. The
particular programmling team and project examined qualify the eztrapolation of the
results. The smpact of the study s an advancement In the understanding of software

development approaches.

In order to Improve, better understand, and manage the software development pro-
cess, (6] evﬂuated the effect of a.;;blylnz chlef programming teams and structured pro-
gramming In system development from the perspectlve of the user, developer, project
manager, and corporate manager. The large (83,000 llne) system, known as '“The New
York Times Project,” and was developed by a team of professionals organlzed as a chlef

programmer team, using structured code, top down design, walk-throughs, and program

20

libraries. Several beneflts were ldentifled, Including reduced development time and cost,
reduced time I1n system integratlon, and reduced fault detection In acceptance testing
and fleld use. The results of the study demonstrated the feasibllity of the chlef pro-
grammer team concept and the accompanying methodologles In a production environ-

ment.

In order to \mprove their development environments through lncreased understand-
Ing, (49, 14, 2, 81, 19] each conducted single project studles to characterize the errors
and changes made durlng a development project. They éxamlned the development of a
moderate to large software project, done by a multl-person team, ln a productlon en-
vironment. They analyzed the frequency and distribution of errors durlng development
and thelr relationshlp with several factors, lncluding module slize, software complexity,
developer experience, method of detectlon and 1solatlon, effort for 1solatlon and correc-
tlon, phase of entrance into the system and observance, reuse of existing design and
code, and role of the requirements document. Such analyses have produced fault
categorization schemes and have been useful In understanding and Improving a develop-

ment environment.

In order to Improve design methodology, [55, 27] examlned a ground-support sys-

tem written in Ada® to characterize the use of Ada packages from the perspectlve of the

A

developer. Four professlohal programmers developed a project of 10,000 source llnes of

code. Factors such as how package use affected the ease of system modificatlion and

3 Ada is a trademark of the Department of Defense.

21

how to measure module change resistance were ldentifled, as well as how these observa-
tlons related to aspects of the development and tralnlng. The major resuits were 1)
several measures of Ada programs were developed, and 2) there was a Indlcatlon that a
lot of training will be necessary If we are to expect the facllitles of Ada to be properly

used.

In order to assess and Improve software testing methodology, (21, 88] characterized
and evaluated the relatlonship between system acceptance tests and operational usage
from the perspective of the developer, project manager, customer, and researcher. The
execution coverage of functionally generated acceptvance test cases and a sample of
operational usage cases was monltored for a medlum-size (10,000 llne) software system
developed in a productlon environment. The results calculated that 84% of the pro-
gram statemen<3 were executed during system operation and that the acceptance test
cases corresponded reasonably well to the operational usage. The results glve insights
into the relatlonships among structural coverage, fault detection, system testing, and

system usage.

5. Problem Areas in Experimentation

The following sectlons 1dentify several problem areas of experimentatlon In software
engineering., These areas may ser\e as guldellnes In the performance of future studles.
After mentioning some overall observations, cautions 1n each of the areas of experiment

deflnition, planning, operation, and Interpretation are discussed.

22

5.1. Experimentation Overall

There appears to be no ““unlversal model” or *‘sllver bullet™ 1n software engineering.
There are an enormous number of factors that differ across environments, In terms of
desired cost/quality goals, methodology, experience, problem domaln, constralnts, etc.
(106, 26, 4, 13, 28]. This resuits In every software development/malntenance/... environ-
ment belng different. Another area of wide varlation 1s the many-to-one differentlal in
human performance [17, 45, 24]. The particular Indlviduals examined ln an emplrical
study can make an enormous difference. Among other conslderations, these varlatlons
suggest that metrics need to be validated for a particular environment and a partlcular
person to show that they capture what Is Intended {17, 18]. Thus, experimental studles

should consider the potentlally vast differences among environments and people.

5.2. Experiment Definition

In the definitlon of the purpose for the experiment, the formulation of intuitive
problems into precisely stated goals 1s a nontrivial task {20, 22]. Definlng the purpose of
a study often requires the articulatlon of what 1s meant by ‘‘software quality.” The
many interpretations and perceptions of quality (32, 39, 72| highlight the need for con-
stdering whose perspective of quality is belng examlined. Thus, a preclse specification of

the problem to be Investigated Is 3 major step toward Its solutlon.

5.3. Experiment Planning

Experimental planning should have a hortzon beyond a first experiment. Con-
troiled studles may be used to focus on the effect of certaln factors, while thelr results

may be confirmed 1n repilcatlons (92, 98, 101, 110, 57, 58, 44, 43, 24] and/or larger case

23

studles (4, 15]. When designlng studles, consider that a comblnation of factors may be
eflective as a ‘‘critlcal mass,” even though the particular factors may be lneflective when
treated In lIsolatlon (15, 105]. Note that formal designs and the resuiting statlstical
robustness are desirable, but we should not be driven exclusively by the achlevement of
statlstlcal significance. Common sense must be maintalned, which allows us, for exam-
ple, to experiment just to help develop hypotheses {19, 109]. Thus, the experimental
planning process should Include a serles of experiments for exploration, verification, and

appllication.

5.4. Experiment Operation

The collectlon of the required data constitutes the primary result of the study
operation phase. The data must be carefully defined, valldated, and communlcated to
ensure 1ts consistent interpretation by all persons assoclated with the experiment: sub-
Jects under observatlon, experimenters, and literature audlence [18|. There have been
papers In the literature that do not deflne thelr data well enough to enable a comparlsoq
of results across many projects and environments. We have often contacted the experi-
menter to discover that we are measuring different things. Thus, the experimenter
should be cautlous about the deflnitlon, valldation, and communlcation of data, since

they play a fundamental role in t,hs experimental process.

5.5. Experiment Interpretation

The appropriate presentation of resuits from experlmeqts contributes to thelr
correct Interpretation. Experimental resuits need to be quallfled by the particular sam-

ples (e.g., programmers, programs) analyzed [20]. The extrapolation of results from a

24

particular sample ml_xst consider the representativeness of the sample to other environ-
ments [41, 111, 106, 86, 4, 28]. The visiblllty of the experimental results in professional
forums and the open llterature provides valuable feedback and constructive criticlsm.
Thus, the presentatlon of experimental resuits should Include appropriate qualificatlon

and adequate exposure to support thelr proper Interpretation.

8. Conclusion

Experimentation 1n software englneering supports the advancement of the fi~'d
through an lterative learnlng process. The experimental process has begun to be apy -+~
in a multlplicity of environments to study a varlety of software technology area.. Fr
the studles presented, It is clear that experimentation has p ven effectlve In providing
Insights and furthering our domaln of knowledge about the software process and pro-
duct. In fact, there 1s a learning process In the experlmentation approach Itself, as has

been shown in thls paper.

We have described a framework for experimentation to provide a structure for
presenting previous studles. We also recommend the framework as a mechanlsm to fa-
cllitate the definition, planning, operation, and interpretation of past and future studies.
The problem areas dlscussed are meant to provide some useful recommendations for the
applicatlon of the expertmental \process In software engineering. The experimental
framework cannot be used !n a vacuum; the framework and the lessons learned comple-
ment one another and should be used 1n a synergistic fashlon. This work contributes to

the understanding and advancement of experimentation In software englneering.

25

7. References

(1]

(3l

(3l

(4]

Sl

(sl

(7]

8]

(9)

(10}

(11)

(12]

(13)

(14]

(15]

E. N. Adams, Optimizing Preventive Service of Software Products, /BM Journal of Research and
Development 28, 1, pp. 2-14, Jan. 1084.

J.-L. Albin and R. Ferreol, Collecte et analyse de mesures de logiciel (Collection and Analysis of
Software Data), Technigue et Science [nformatiques 1, 4, pp. 297-313, 1982. (Rairo ISSN
0752-4072)

A. Avizienis, P. Gunningberg, J. P. J. Kelly, L. Strigini, P. J. Traverse, K. S. Tso, and U. Voges,
The UCLA Dedix System: A Distributed Testbed for Multiple-Version Software, Digest Fi-
Jeenth Int. Sym. Fault-Tolerant Computing, Ann Arbor, MI, June 19-21, 1985.

J. W. Bailey and V. R. Basili, A Meta-Model for Software Development Resource Expenditures,
Proc. Fifth Int. Conf. Software Engr., San Diego, CA, pp. 107-1186, 1981.

J. W, Balley, Teaching Ada: A Comparison of Two Approaches, Dept. Com. Sci., Univ. Maryland,
College Park, MD, working paper, 1984.

F. T. Baker, System Quality Through Structured Programming, AFIPS Proec. 1972 Fall Joint:
Compster Conf. 41, pp. 339-343, 1972.

V. R. Basili and F. T. Baker. Tutorial of Structured Programming, Eleventh [EEE COMPCON.
[EEE Cat. No. 75CH1049-8, 1978.

V. R. Basili and A. J. Turner, [terative enhancement: a practical technique for software develop-
ment, /[EEE Transactions on Softwere Engineering SE-1, 4, Dec. 1078.

V. R. Basili and A. J. Turner, SIMPL-T: A Structured Programming Language, Paladin House
Publishers, Geneva, IL, 1976.

V. R. Basili, M. V. Zelkowits, F. E. McGarry, R. W. Reiter, Jr., W. F. Truszkowski, and D. L.
Weiss, The Software Engineering Laboratory, Software Eng. Lab., NASA/Goddard Space
Flight Center, Greenbelt, MD, Rep. SEL-77-001, May 1977.

V. R. Basill and M. V. Zelkowits, Analyzing Medlum-Scale Software Developments, Proec. Third
Int. Conf. Softwere Engr., Atlanta, GA, pp. 116-123, May 1978.

V. R. Basili, Tutoriel on Models and Metrics for Software Management and Engincering, IEEE
Computer Soctety, New York, 1080.

V. R. Basill and K. Freburger, Plogramming Measurement and Estimation in the Software En-
gineering Laboratory, Journal of Systems and Software 2, pp. 47-57, 1981.

V. R. Bastli and D. M. Weiss, Evaluation of a Software Requirements Document By Analysis of
Change Data, Proc. Fifth Int. Conf. Software Engr., San Diego, CA. pp. 314-323, March 9-12,
1981.

V. R. Basilt and R. W. Reiter, A Controlled Experiment Quantitatively Comparing Software De-
velopment Approaches, [EEE Trans. Software Engr. SE-7, May 1981.

26

(32}

(33]

(34)

(3s]

(36}

(37]

(38]

(39}

(0]
(41]

(42}

(43]

(44)

(48]

(48]

(47]

(48]

T. P. Bowen, G. B. Wigle, and J. T. Tsai, Specification of Software Quality Attributes, Rome Air
Development Center, Griffiss Air Force Base, NY, Tech. Rep. RADC-TR-85-37 (three
volumes), Feb. 198S.

G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Ezperimenters, John Wiley & Sons,
New Yoik, 1978,

F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley Publishing Co., Reading, MA. 1975.

R. E. Brooks, Studying Programmer Behavior: The Problem of Proper Methodology, Communica-
tions of the ACM 23, 4, pp. 207-213, 1980.

W. D. Brooks, Software Technology Payoff: Some Statistical Evidence, J. Systems and Software 2,
pPD. 3-9, 1981.

F. O. Buck, Indicators of Quality Inspections, IBM Systems Products Division, Kingston, NY,
Tech. Rep. 21.802, Sept. 1981.

D. N. Card, F. E. McGarry, J. Page, S. Eslinger, and V. R. Basili, The Software Engineering La-
boratory, Software Eng. Lab., NASA/Goddard Space Flight Center, Greenbelt, MD Rep.
SEL-81-104, Feb. 1982,

J. P. Cavano and J. A. McCall, A Framework for the Measurement of Software Quality, Proe.
Software Quality and Assurance Workshop, San Diego, CA, pp. 133-139, Nov. 1978.

W. G. Cochran and G. M. Cox, Ezperimental Designa, John Wiley & Sons, New York, 1950.
W. G. Cochran, Sampling Technigues, John Wiley & Sons, Inc., 1953.

P. A. Currit, M. Dyer, and H. D. Mills, Certifying the Reliability of Software, IBM Corp., Federal
Systems Division, 6600 Rockledge Dr., Bethesda, MD, 20817, Tech. Rep., March 1985. (sub-
mitted to the [EEE Trans. Software Engincering)

B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and T. Love, Measuring the Psychological
Complexity of Software Maintenance Tasks with the Halstead and McCabe Metrics, [EEE
Trane. Software Engr., pp. 96-104, March 1979.

B. Curtis, S. B. Sheppard, and P. M. Milliman, Third Time Charm: Stronger Replication of the
Ability of Software Complexity Metrics to Predict Programmer Performance, Proc. Fourth [nt.
Conf. Software Engr., pp. 356-360, Sept. 1079.

B. Curtis, Cognitive Science of Programming, Sizth Minnowbrook Workshop on Software Perfor-
mance Evelustion, Blue Mountain Lake, NY, July 19-22, 1983.

M. dyor and H. D. Mills, Developing Electronic Systems with Certifiable Reliability, Proc. NATO
Conf., Summer, 1982.

M. Dyer, Cleanroom Software Development Method, IBM Federal Systems Division, Bethesda,
MD, October 14, 19832.

T. Emerson, A Discriminant Metric for Module Cohesion, Proc. Seventh Intl. Conf Software
Engr., Orlando, FL, pp. 294-303, 1984.

(18]

(17]

(18]

(19]

(20

[21]

(23]

(23}

(24]

(28]

(26

(27]

(28]

(29)

(30}

(31)

v

. R. Basili and C. Doerflinger, Monitoring Software Development Through Dynamic Variables,
Proc. COMPSAC, Chicago, IL, 1983.

. R. Basilli and D. H. Hutchens, An Empirical Study of a Syntactic Metric Family, Trans. Soft-
ware Engr. SE-9, 8, pp. 664-672, Nov. 1983.

. R. Basill, R. W. Seldby, Jr., and T. Y. Phillips, Metric Analysis and Data Validation Across
FORTRAN Projects, [EEE Trans. Software Engr. SE-9, 8, pp. 652-663, Nov. 1983.

. R. Basili and B. T. Perricone, Software Errors and Complexity: An Empirical Investigation,
Communications of the ACM 27. 1, pp. 42-52, Jan. 1984.

. R. Basill and R. W. Selby, Jr.,, Data Collection and Analysis in Software Research and
Management, Proceedings of the American Statistical Association and Biometric Society Joint
Statistical Meetings, Philadelphia, PA, August 13-16, 1984.

. R. Basill and J. R. Ramsey, Structural Coverage of Functional Testing, Dept. Com. Sci., Univ.
Maryland, College Park, Tech. Rep. TR-1442, Sept. 1984.

. R. Basili and D. M. Weiss, A Methodology for Collecting Valid Software Engineering Datas,
Trans. Software Engr. SE-10, 6, pp. 728-738, Nov. 1984.

. R. Basili and C. L. Ramsey, Arrowsmith-P - A Prototype Expert System for Software En-

gineering Management, Dept. Com. Sci., Univ. Maryland, College Park, Tech. Rep., 198S.
(submitted to the Symposssm on Ezpert Systems in Government, Mclean, VA, Oct. 1985)

. R. Basil{ and R. W. Selby, Jr., Comparing the Effectiveness of Software Testing Strategies,

Dept. Com. Seci., Unilv. Maryland, College Park, Tech. Rep., 1985. (submitted to the /[EEE
Trans. Software Engr.)

. R. Basill and R. W. Selby; Jr., Four Applications of a Software Data Collection and Analysis

Methodology, Proc. NATO Advanced Study Instituts: The Challenge of Advanced Computing
Technology to System Design Methods, Durham, U. K., July 29 - August 10, 19865.

. R. Basili and R. W. Selby, Jr., Calculation and Use of an Environment's Characteristic Soft-

ware Metric Set, Proc. Eighth Int. Conf. Software Engr., London, August 28-30, 1985.

. R. Basili, E. E. Kat3, N. M. Panlilio-Yap, C. L. Ramsey, and S. Chang, A Quantitative Char-

acterization and Evaluation of a Software Development in Ada, [EEE Compsuter, September
1985,

. W. Boehm, Software Engineering Economscs, Prentice-Hall, Englewood Cliffs, NJ, 1981.

. W. Boehm, T. E. Gray, and 'T. Seewaldt, Prototyping Versus Specifying: A Multiproject Ex-

periment, [EEE Trans. Software Engr. SE-10. 3, pp. 200-303, May 1084.

. C. Bogdan and S. K. Biklen, Qualitative Research for Education: An Introduction to Theory

and Methods, Allyn and Bacon, Boston, MA, 1982.

Bowen, Estimation of Residual Faults and Testing Effectiveness, Seventh Minnowbrook
Workshop on Software Performance Evaluation, Blue Mountain Lake, NY, July 24-27, 1984.

27

(67]

(e8]

(69]

(7ol

(71)

(72}

(73]

(74]

(75]

(76}

(77)

(78]

(79]

(8o}

(81]

82

83

(84]

J. Knight and N. Leveson, A Large Scale Experiment in N-Version Programming, Proec. of the
Ninth Annval Software Engincering Workshop, MASA/GSFC, Greenbelt, MD, Nov. 1984.

R. C. Linger, H. D. Mills, and B. 1. Witt, Structured Programming: Theory and Practice,
Addison-Wesley, Reading, MA, 1979.

B. Littlewood and J. L. Verrall, A Bayesian Reliability Growth Model for Computer Software,
Applied Statistics 22, 3, 1973.

B. Littlewood, Stochastic Reliability Growth: A Model for Fault Renovation Computer Programs
and Hardware Designs, /[EEE Trans. Reliability R-30, 4, Oct. 1981.

T. J. McCabe, A Complexity Measure, /[EEE Trans. Software Engr. SE-2, 4, pp. 308-320, Dec.
1978.

J. A. McCall, P. Richards, and G. Walters, Factors in Software Quality, Rome Air Development
Center, Griffiss Air Force Base, NY, Tech. Rep. RADC-TR-77-369, Nov. 1977.

R. J. Miara, J. A. Musselman, J. A. Navarro, and B. Shneiderman, Program Indentation and
Comprehensibility, Communications of the ACM 28, 11, pp. 861-867, Ncv. 1983.

T. Moher and G. M. Schneider, Methodology and Experimental Research in Software Engineering,
International Journal of Man-Machine Studies 18, 1, pp. 65-87, 1983.

S. A. Mulaik, The Foundations of Factor Analysis, M:Graw-Hill, New York, 1973.

J. D. Musa, A Theory of Software Reliability and Its Application, [EEE Trans. Software Engr.
SE-1, 3, pp. 312-327, 1975.

J. D. Musa, Software reliability measurement, Journal of Systems and Software 1, 3, pp. 223-241,
1980.

G. J. Myers, Composite/Structured Design, Van Nostrand Reinhold, 1978.

G. J. Myers, A Controlled Experiment in Program Testing and Code Walkthroughs/Inspections,
Commaunications of the ACM, pp. 760-768, Sept. 1978.

J. Neter and W. Wasserman, Applied Linear Statistical Models, Richard D. Irwin, Inc., Home-
wood, IL, 1974.

T. J. Ostrand and E. J. Weyuker, Collecting and Categorizing Software Error Data in an Indus-
trial Environment, Dept. Com. Sci., Courant Inst. Math. Sci., New York Univ., NY. Tech.
Rep. 47, August 1982 (Revised May 1983).

D. J. Pansl, Experience with Automatic Program Testing, Proc. NBS Trends and Applications,
Nat. Bureau Stds., Gaithersburg, MD, pp. 25-28, May, 28 1981.

D. L. Parnas, On the Criteria to be Used in Decomposing Systems into Modules, Communscations
of the ACM 18, 12, pp. 1053-1059, 1072.

D. L. Parnas, Some Conclusions from an Experiment in Software Engineering Techniques, AFIPS
Proe. 1972 Fall Joint Computer Conf. 41, pp. 325-329, 1972.

30

(49]

(so}

(51}

(52

(83}

(54)

(58]

56}

(87)

(58]

'59)

81}

82}

(63)

(4]

[88]

‘86

A. Endres, An Analysis of Errors and their Causes in Systems Programs, [EEE Trans. Software
Engr., pp. 140-149, June 1975.

A. R. Feuer and E. B. Fowlkes, Some Results from an Emplrical Study of Computer Software,
Proc. Fourth Int. Conf. Software Engr., pp. 351-355, 1979,

R. W. Floyd, Assigning Meaning to Programs, Am. Math. Soe. 19, ed. J. T. Schwartz. Provi-
dence, RI, 1967.

K. Freburger and V. R. Basili, The Software Engineering Laboratory: Relationship Equations,
Dept. Com. Sci., Unlv. Maryland, College Park, Tech. Rep. TR-7684, May 1979.

J. D. Gannon and J. J. Horning, The Impact of Language Design on the Production of Reliable
Software, Trans. Software Engr. SE-1, pp. 179-191, 1975.

J. D. Gannon, An Experimental Evaluation of Data Type Conventions, Communications of the
ACM 20, 8. pp. 584-506, 1077,

J. D. Gannon, E. E. Katz, and V. R. Basili, Characterizing Ada Programs: Packages. The Meas-
urement of Compster Software Performance, Los Alamos National Laboratory, Aug. 1983.

A. L. Goel, Software Reliability and E:’'mation Techniques, Rome Air Developmeat Center,
Griffiss Air Force Base, NY, Rep. RADC-TR-82-283, October 1982.

J. D. Gould and P. Drongowski, An Exploratory Study of Computer Program Debugging, Human
Factors 18, 3, pp. 258-277, 1974. ’

J. D. Gould, Some Psychological Evidence on How People Debug Computer Programs, [nterna-
tional Jowurnal of Man-Machine Studies 7. pp. 151-182, 1975.

M. H. Halstead, Elements of Software Science, North Holland, New York, 1977.

W. C. Hetzel, An Expermental Analysis of Program Verification Methods, Ph.D. Thesis, Univ. of
North Carolina, Chapel Hill, 1976.

C. A. R. Hoare, An Axiomatic Basis for Computer Programming, Commsnications of the ACM
12, 10, pp. 576-583, Oct. 1060.

D. H. Huchens and V. R. Basili, System Structure Analysis: Clustering With Data Bindings,
IEEE Trans. Soft. Engr. SE-11, 8, Aug. 1985.

S-3. V. Hwang, An Empirical Study in Functional Testing, Structural Testing, and Code
Reading/Inspectione, Dept. Com. Sci., Univ. of Maryland, College Park, Scholarly Paper 362,
Dec. 1981. N

Z. Jelinski and P. B. Moranda, Applications of a Probability-Based Model to & Code Reading Ex-
periment, Proc. [EEE Symposium on Computer Software Reliability, New York. pp. 78-81,
IEEE, 1073.

W. L. Johnson, S. Draper, and E. Soloway, An Effective Bug Classification Scheme Must Take the
Programmer into Account, Proc. Workshop High-Level Debugging, Palo Alto, CA, 1983.

J. P. J. Kelly, Specificaction of Fault-Tolerant Multi-Version Software: Experimental Studles of a
Design Diversity Approach. UCLA Ph.D. Thesis, 1082.

29

(102]

(103]

(104]

(108)

(1086]

(107]

(108}

(109}

(110)

{111}

(112]

[113]

W. P. Stevens, G. J. Myers. and L. L. Constantine, Structural Design, [BM Systems Journal 13,
2, PP. 115-139, 1074.

L. G. Stucki, New Directions in Automated Tools for Improving Software Quality, in Current
Trends in Programming Methodology, ed. R. T. Yeh, Prentice Hall, Englewood Cliffs, NJ,
1977.

I. Vessey and R. Weber, Some Factors Affecting Program Repair Maintenance: An Empirical
Study, Commsnications of the ACM 28, 2, pp. 128-134, Feb. 1983,

J. Vosburgh, B. Curtis, R. Wolverton, B. Albert, H, Malec, S. Hoben, and Y. Liu, Productivity
Factors and Programming Environments, Proe. Seventh Int. Conf. Software Engr., Orlando,
FL, pp. 143-152, 1984.

C. E. Walston and C. P. Felix, A Method of Programming Measurement and Estimation, /BM
Systems J. 18, 1, pp. 54-73, 1977.

G. Weinberg, The Psychology of Computer Programming, Van Nostrand Rheinhold Co., 1971.

M. Weiser, Programmers Use Slices When Debugging, Communications ACM 25, pp. 446-452,
July 1982.

D. M. Weiss and V. R. Basill, Evaluating Software Development by Analysis of Changes: Some

Data from the Software Engineering Laboratory, /EEE Trans. Software Engr. SE-11, 2, pp.
157-168, February 1988.

L. Weissman, Psychological Complexity of Computer Programs: An Experimental Methodology.
SIGPLAN Notices 8, 8, pp. 25 - 38, June 1974.

R. Wolverton, The Cost of Developing Large Scale Software, [EEE Trans. Computers 23, 6, 1974.

S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen, The Effect of Modularization and Comments
on Program Comprehension, Dept. Com. Sci., Arizona St. Univ., Tempe, AZ, working paper,
1981.

J. C. Zolnowski and D. B. Simmons, Taking the Measure of Program Complexity, Proec. National
Computer Conference, pp. 329-338, 1981.

32

(8]

(se]

(87]

(88)

(89}

91]

(92}

(93]

fo4]

(o8] .

(o8]

97]

(98]

(99}

(100]

{101]

D. L. Parnas, A Technique for Module Specification With Examples, Commsunications of the ACM
15, May 1972.

L. Putnam, A General Empirical Solution to the Macro Software Sizing and Estimating Problem,
IEEE Trans. Software Engr. 4, 4, 1978.

H.R. Ramsey, M.E. Atwood, and J.R. Van Doren, Flowcharts Versus Program Design Languages:
An Experimental Comparison, Commaunications ACM 28, 8, pp. 445-4490, June 1983.

J. Ramsey, Structural Coverage of Functional Testing, Seventh Minnowbrook Workshop on Soft-
ware Performance Evaluation, Blue Mountain Lake, NY, July 24-27, 1984.

Statistical Analysis System (SAS) User's Guide, SAS Institute Inc., Box 8000, Cary, NC, 27511,
1082.

H. Schefle, The Analysis of Variance, John Wiley & Sons, New York, 1959.

Annotated Bibliography of Software Engineering Laboratory (SEL) Literature, Software Eng.
Lab., NASA/Goddard Space Flight Center, Greenbelt, MD Rep. SEL-82-008, Nov, 1982.

R. W. Selby, Jr.. An Empirical Study Comparing Software Testing Techniques, Sizth Min-
nowbrook Workshop on Software Performance Evaluation, Blue Mountain Lake, NY, July 19-
22, 1983.

R. W. Selby, Jr., Evaluations of Software Technologies: Testing, CLEANROOM, and Metrics,
Dept. Com. Sci., Univ. Maryland, College Park, Ph. D. Dissertation, 1985.

R. W. Selby, Jr., V. R. Basili, and F. T. Baker, CLEANROOM Software Development: An Empir-
ical Evaluation, Dept. Com. Sci., Univ. Maryland, College Park, Tech. Rep. TR-1415, Febru-
ary 1985. (submitted to the [EEE Trans. Software Engr.)

J. G. Shancthikumar, A Statistical Time Dependent Error Occurrence Rate Software Reliability
Model with Imperfect Debugging, Proc. 1981 National Computer Conference, June 1981.

B. A. Sheil, The Psychological Study of Programming, Computing Surveys 13, pp. 101-120, March
1981.

V.Y. Shen, T.J. Yu, SM. Thebaut, and L.R. Paulsen, Identifying Error-Prone Software - An Em-
pirical Study, IEEE Trans. Soft. Engr. SE-11, 4, pp. 317-324, April 1985.

B. Shneiderman, R. E. Mayer, D. McKay, and P. Heller, Experimental Investigations of the Utili-
ty of Detailed Flowcharts in Programming, Communscations of the ACM 20, 6, pp. 373-381,
1977.

S. Stegel, Nonperametrme Statistics for the Behavioral Sciences, McGraw-Hill, New York, 1955.

E. Soloway, K. Ehrlich, J. Bonar, and J. Greenspan, What Do Novices Know About Program-
ming?, In Directions in Human-Computer Interactions, ed. A. Badre and B. Shneiderman,
Ablex, Inc., 1982,

E. Soloway and K Ehrlich, Empirical Studies of Programming Knowledge, Trans. Software Engr.
SE-10, 5, pp. 505-609, Sept. 1684,

31

Motivation To improve the unit testing process,

Purpose characterize and evaluate

Object the processes of functional and structural testing |
Perspective from the perspective of the developer

Domain: programmer | as they are applied by experienced programmers
Domain: program to unit-size software

Scope in a blocked subject-project study.

Figure 3. e ntal scopes.
s oLERE
#Teams per #Profects y
project

one more than one
one Single project Multi-project

variation

more than Replicated Blocked
one project subject-project

F\gre 1. Summg of the framework of egen’memauon.

[. Definition

Motivation Object Purpose Perspective Domain Scope
Understand | Product Characterize | Developer Programmer Single project
Assess Process Evaluate Modifler Program/project JMulti-project
Manage Model Predict Maintainer Replicated project
Engineer Metric Motivate Project manager Blocked subject-project
Learn Theory Corporate manager
Improve Customer
Validate User
LAssure Reseg[_gr
. Planning
Design Criteria Measurement

Experimental designs
Incomplete block
Completely randomized
Randomized block
Fractional factorial

Multivariate analysis
Correlation
Factor analysis
Regression

Statistical models

Non-parametrie

Sampling

Direct reflections of cost/quality
Cost
Errors
Changes
Reliability
Correctness

Indirect reflections of cost/quality
Data coupling
Information visibility
Programmer comprehension
Execution coverage
Slze

gomglegcg Qatlo
II1. Operation

Metric definition
Goal-question-metric
Factor-criteria-metric

Metric validation

Data collection
Automatability
Form design and test

Objective vs. subjective

Level of measurement
Nominal/classificatory
Ordinal/ranking
[nterval

Preparation

Execution

Analysis

Pilot study

Data collection
Data validation

Mode! gg!!caclog \
IV. Interpretation

Quantitative vs. qualitative

Preliminary data analysis
Plots and histograms
Model assumptions

Primary data analysis

Interpretation context Extrapolation Impact
Statistical framework Sample representativeness Visibility
Study purpose Replication
Field of research Apbplication —
‘?:"‘r‘\-r RPN
di g

